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CONTROL SYNTHESIS FOR A CLASS OF HYBRID SYSTEMS SUBJECT
TO CONFIGURATION-BASED SAFETY CONSTRAINTS∗

Michael Heymann,† Feng Lin,‡ and George Meyer

Ames Research Center

SUMMARY

We examine a class of hybrid systems which we call Composite Hybrid Machines (CHMs) that con-
sists of the concurrent (and partially synchronized) operation of Elementary Hybrid Machines (EHMs).

Legal behavior, specified by a set of illegal configurations that the CHM may not enter, is to be
achieved by the concurrent operation of the CHM with a suitably designed legal controller. In the present
paper we focus on the problem of synthesizing a legal controller, whenever such a controller exists.
More specifically, we address the problem of synthesizing the minimally restrictive legal controller.

A controller is minimally restrictive if, when composed to operate concurrently with another
legal controller, it will never interfere with the operation of the other controller and, therefore, can
be composed to operate concurrently with any other controller that may be designed to achieve liveness
specifications or optimality requirements without the need to reinvestigate or reverify legality of the
composite controller.

We confine our attention to a special class of CHMs where system dynamics is rate-limited and
legal guards are conjunctions or disjunctions of atomic formulas in the dynamic variables (of the type
x ≤ x0 or x ≥ x0). We present an algorithm for synthesis of the minimally restrictive legal controller.

We demonstrate our approach by synthesizing a minimally restrictive controller for a steam boiler
(the verification of which recently received a great deal of attention).

1 INTRODUCTION

Various definitions have been proposed in the literature to capture the intuitive idea that
hybrid systems are dynamic systems in which discrete and continuous behaviors coexist and interact
(refs. 1–6). Broadly speaking, they are systems in which change occurs in response to events that take
place discretely, asynchronously, and sometimes nondeterministically and also in response to dynamics
that represents (causal) evolution as described by differential or difference equations of time. Thus,
most physical systems that can be represented by formal behavior models are hybrid in nature.
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†Technion, Israel Institute of Technology, Haifa 32000, Israel.
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In recent years there has been a rapidly growing interest in the computer-science community in
modeling, analysis, formal specification, and verification of hybrid systems (see, e.g., references 2 and 7).
This interest evolved progressively from logical systems, through “logically timed” temporal systems
(refs. 8 and 9) to real-time systems modeled as timed-automata and, most recently, to a restricted class
of hybrid systems called hybrid automata (ref. 1). Thus, the computer-science viewpoint of hybrid
systems can be characterized as one of discrete programs embedded in an “analog” environment.

In parallel, there has been growing interest in hybrid systems in the control-theory community,
where traditionally systems have been viewed as “purely” dynamic systems that are modeled by dif-
ferential or difference equations (refs. 3, 4, and 10). More recently, control of purely discrete systems,
modeled as discrete-event systems, also received attention in the literature (refs. 11 and 12). The grow-
ing realization that neither the purely discrete nor the purely continuous frameworks are adequate for
describing many physical systems has been an increasing driving force to focus attention on hybrid
systems. Contrary to the computer-science viewpoint that focuses interest in hybrid systems on issues
of analysis and verification (refs. 13–15), the control-theory viewpoint is to focus its interest on issues
of design. Typical hybrid systems interact with the environment both by sharing signals (i.e., by trans-
mission of input/output data) and by event synchronization (through which the system is reconfigured
and its structure modified). Control of hybrid systems can therefore be achieved by employing both
interaction mechanisms simultaneously. Yet, while this flexibility adds significantly to the potential
control capabilities, it clearly makes the problem of design much more difficult. Indeed, in view of the
obvious complexity of hybrid control, even the question of what are tractable and achievable design
objectives is far from easy to resolve.

In the present paper we examine the control problem for a restricted class of hybrid systems that
we call composite hybrid machines (CHMs). We confine our attention to bounded rate CHMs, in which
the dynamic rates are bounded by lower and upper constant bounds. Control is confined to event
synchronization; that is, the controller can affect the system’s behavior only by discrete commands.
These hybrid systems are a generalization of timed automata, which in turn generalize discrete event
systems by introducing real-time constraints. For such systems it is natural to specify the control
objective in terms of safety constraints and liveness constraints, much in the spirit of the control of
discrete-event systems. Indeed, this generalization is on one hand simple enough to be computationally
tractable, and on the other hand complex enough to provide some substantial new insight and a sense
of new research direction.

2 DESIGN PHILOSOPHY

Intuitively, a controller for legal behavior of a hybrid system is minimally restrictive if it never takes
action unless constraint violation becomes imminent. When this happens, the controller is expected to
do no more than prevent the system from becoming “illegal.” This is a familiar setting in the discrete-
event control literature, where the role of the controller has traditionally been viewed as that of a
supervisor that can only intervene in the system’s activity by event disablement (refs. 11 and 12). Thus,
a minimally restrictive supervisor of a discrete-event system is one that disables events only whenever
their enablement would permit the system to violate the specification.
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It is not difficult to see that a natural candidate for a “template” of a minimally restrictive supervisor
is a system whose range of possible behaviors coincides with the set of behaviors permitted by the
specification. The concurrent execution of the controlled system and such a supervisor, in the sense
that events are permitted to occur in the controlled system whenever they are possible in the controller
template, would then constrain the system to satisfy the specification exactly. We shall then say that
we have employed the specification as a candidate implementation. If all the events that are possible
in the system but not permitted by the candidate supervisor can actually be disabled, we say that
the specification is implementable or (when the specification is given as a legal language) controllable
(ref. 11). Generally, a specification may not be implementable because not all the events can be disabled.

The standard approach to supervisory controller synthesis can then be interpreted as an iterative
procedure where, starting with the specification as a candidate implementation, at each stage of the
iteration the specification is tightened so as to exclude behaviors that cannot be prevented from becoming
illegal by instantaneous disablement of events (refs. 16 and 17). The subspecification thus obtained is
then used as a new candidate implementation. When the procedure converges in a finite number of steps
(a fact guaranteed in case the system is a finite automaton and the specification a regular language), the
result is either an empty specification (meaning that a legal supervisor does not exist) or a minimally
restrictive implementable subspecification.

In the present paper we shall employ the same design philosophy for the synthesis of minimally
restrictive controllers of hybrid systems. While the approach is, in principle, very general and can be
employed for a wide range of specifications, we confine our attention in the present paper to a restricted
class of safety specifications. In particular, we shall consider only the problem where the controller is
required to prevent the system from entering a specified set of illegal configurations. Although we shall
not show this explicitly in this paper, a wide class of specifications can be transformed into the setting
considered here.

We shall restrict our attention further to bounded-rate hybrid systems. That is, we consider systems
in which the rates of the dynamic variables are bounded by finite constants. It is not difficult to show
that, even in this simple case, the question of existence of a controller may be computationally rather
tricky.

3 HYBRID MACHINES

We first introduce a modeling formalism for a class of hybrid systems which we call hybrid machines
and which are a special case of hierarchical hybrid machines to be discussed elsewhere (Heymann and
Lin, Hierarchical Hybrid Machines, in preparation). Hybrid machines are similar in spirit to hybrid
automata as introduced in reference 1. We begin by an informal example.

3.1 Illustrative Example

Figure 1 describes schematically a hybrid system that consists of a water tank with water supplied
by a pump and with outflow controlled by a two-position valve.
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Figure 1. Water tank system.

The system is described graphically in figure 2 as a CHM that consists of three elementary hybrid
machines (EHMs) running in parallel:

PUMP ||TANK||V ALV E

The EHM Tank has three vertices: <high>, <normal>, and <low>, representing the tank’s high,
normal, and low levels, respectively. The dynamic behavior of the tank’s water level L is described
by the equations ẋ = V − F,L = x, where x is the (internal) state of the vertex, and V and F are
the rates of water inflow and outflow, respectively. The quantities V and F constitute input signals to
the EHM Tank and output signals of the EHMs Pump and Valve, respectively. Tank may reside at
a given vertex provided the vertex invariant [.] is true. Thus, it may reside at the vertex <normal>
so long as the invariant [L1≤L∧L≤L2] is satisfied, and similarly for the other vertex invariants. The
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Figure 2. Water tank system CHM.
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transitions between the three vertices are dynamic in the sense that they are triggered, respectively, by
the guards [L > L2], [L≤L2], [L≥L1] and [L < L1] becoming true. The self-loop dynamic transition
of the vertex <normal> labeled by [L≤L1 + ∆]→pump− on is guarded by the predicate [L≤L1 + ∆]
and upon occurrence triggers the output event pump− on. (Throughout, underlined event labels denote
input events and overlined event labels denote output events.) Similarly, the other self-loop transition
of the vertex <normal> is guarded by [L≥L2 − ∆] and triggers the output event pump− off . The
EHM Tank is initialized at the vertex <normal> with initial water level L0 (that lies between the lower
bound L1 and the upper bound L2).

The EHM Pump has two vertices: < offP > and < onP >. At the vertex < offP >, the pump
is off, reflected by the vertex output V = 0. Similarly, at the vertex < onP >, the pump is running
and the vertex output V is the pump’s (constant) flow rate P . The transitions between the two vertices
are labeled by the input event labels pump− on and pump− off . These transitions are triggered by
and take place concurrently and synchronously with the output events pump− on and pump− off ,
respectively.

Finally, the EHM Valve can be at either of the vertices < openV > or < closedV >. Transitions
between the two vertices are labeled by input events valve− open and valve− closed, respectively.
These transition labels do not appear as output events in any of the other parallel EHMs but can be
received from the (unmodeled) environment. When Valve is closed the rate of outflow is F = 0, and
when it is open the rate is proportional to the water level in the tank F = KL.

Notice that there are two mechanisms for communication between parallel EHMs: (1) Input/output-
event synchronization, by which transitions are synchronized. Transitions labeled by input events can
take place only in synchrony with a corresponding output event that is being transmitted either by a
parallel EHM or by the environment. (2) Signal sharing, by which outputs (output signals) of a vertex
are available as vertex inputs to any other parallel EHM.

3.2 Elementary Hybrid Machines

With the above illustrative example in mind, we can now formally define hybrid machines as
follows. An elementary hybrid machine is denoted by

EHM = (Q,Σ, D, I, E, (q0, x0))

The elements of EHM are as follows.

• Q is a finite set of vertices.

• Σ is a finite set of event labels. An event is an input event, denoted by σ (underline), if it
is received by the EHM from its environment; and an output event, denoted by σ (overline), if it is
generated by the EHM and transmitted to the environment.

• D = {dq = (xq, yq, uq, fq, hq) : q ∈ Q} is the dynamics of the EHM, where dq, the dynamics
at the vertex q, is given by

ẋq = fq(xq, uq)
yq = hq(xq, uq)
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with xq, uq, and yq, respectively, the state, input, and output variables of appropriate dimensions. fq
is a Lipschitz continuous function and hq a continuous function. (A vertex need not have dynamics
associated with it—that is, dq = ∅, in which case we say that the vertex is static.)

• I = {Iq : q ∈ Q} is a set of invariants. Iq represents conditions under which the EHM is
permitted to reside at q. A formal definition of Iq will be given in the next subsection.

• E = {(q,G ∧ σ → σ′, q′, x0
q′) : q, q′ ∈ Q} is a set of edges (transition paths), where q is the

exiting vertex, q′ the entering vertex, σ the input event, σ′ the output event, G the guard to be formally
defined in the next subsection, and x0

q′ the initialization value for xq′ upon entry to q′.

(q,G ∧ σ → σ′, q′, x0
q′) is interpreted as follows. If G is true and the event σ is received as an input,

then the transition to q′ takes place with the assignment of the initial condition xq′(t0) = x0
q′ (here t0

denotes the time at which the vertex q′ is entered). The output event σ′ is transmitted at the same time.
If σ is absent, then the transition takes place immediately upon G becoming true; if σ′ is absent, then no
output event is transmitted; if G is absent, the guard is always true and the transition will be triggered
by the input event σ; and if x0

q′ is absent, then the initial condition is inherited from xq (assuming xq
and xq′ represent the same physical object and hence are of the same dimension).

• (q0, x0) denote the initialization condition: q0 is the initial vertex and xq0(t0) = x0.

For the EHM to be well defined, we require that the vertices be completely guarded with each possible
invariant violation. That is, every invariant violation implies that some guard becomes true and the
associated transition is input event–free in the sense that it has the form (q,G → σ′, q′, x0

q′). (It is, in
principle, permitted that more than one guard become true at the same instant. In this case the transition
that will actually take place is resolved nondeterministically.) Note that we do not require the converse
to be true. That is, a transition can be triggered even if the invariant is not violated. We do require
that, upon entry to q′, the invariant Iq′ not be violated. It is, however, possible that upon entry to q′

one of the guards at q′ is already true. In this case, the EHM will immediately exit q′ and go to the
vertex specified by the guards. Such a transition is considered instantaneous. Naturally, we only allow
finite chains of such instantaneous transitions. That is, the guards must be such that no sequence of
instantaneous transitions will form a loop.

In this paper we shall study a restrictive class of hybrid machines by making the following
assumption.

Assumption 1 The dynamics described by fq and hq has the following properties: (1) hq(xq, uq) is
a linear function; and (2) fq(xq, uq) is bounded by a lower limit kLq and an upper limit kUq , that is,

fq(xq, uq) ∈ [kLq , k
U
q ].

An execution of the EHM is a sequence

q0
e1,t1−→ q1

e2,t2−→ q2
e3,t3−→ ...

where ei is the ith transition and ti is the time when the ith transition takes place. For each execution,
we define its trajectory, path, and trace as follows.
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• The trajectory of the execution is the sequence of the vector time functions of the state variables:

xq0 , xq1 , xq2 , ...

where xqi = {xqi(t) : t ∈ [ti, ti+1)}.

• The path of the execution is the sequence of the vertices.

• The input trace of the execution is the sequence of the input events.

• The output trace of the execution is the sequence of the output events.

Remark 1 It is easily seen that discrete-event systems and continuous-variable systems are special cases
of the hybrid systems as described above. Indeed, we note that if there is no dynamics in an EHM (and
hence no D and I), then

EHM = (Q,Σ, E, q0)

where edges E are labeled only by events: a typical discrete-event system. Similarly, if there is no
event and only one vertex in an EHM (and hence no need to introduce Q, Σ, I , and E), then

EHM = (D,x0) = (x, y, u, f, h, x0)

which is a typical continuous-variable system.

3.3 Composite Hybrid Machine

A composite hybrid machine consists of several elementary hybrid machines running in parallel:

CHM = EHM1||EHM2||...||EHMn

Interaction between EHMs is achieved by means of signal transmission (shared variables) and input/output-
event synchronization (message passing) as described below.

Shared variables consist of output signals from all EHMs as well as signals received from the
environment. They are shared by all EHMs in the sense that they are accessible to all EHMs. A
shared variable can be the output of, at most, one EHM. If the EHM of the output variable does not
update the variable, its value will remain unchanged. The set of shared variables defines a signal space
S = [S1, S2, ..., Sm].

Transitions are synchronized by an input/output synchronization formalism. That is, if an output
event σ is either generated by one of the EHMs or received from the environment, then all EHMs for
which σ is an active transition label (i.e., σ is defined at the current vertex with a true guard) will
execute σ (and its associated transition) concurrently with the occurrence of σ. An output event can
be generated by, at most, one EHM. Notice that input events do not synchronize among themselves.
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Notice further that this formalism is a special case of the prioritized synchronous composition formalism
(ref. 18), where each event is in the priority set of, at most, one parallel component.

By introducing the shared variables S, we can now define invariants and guards formally as boolean
combinations of inequalities of the form (called atomic formulas)

Si > Ci or Si < Ci

where Si is a shared variable and Ci is a real constant.

To describe the behavior of

CHM = EHM1||EHM2||...||EHMn

we define a configuration of the CHM to be

q =< q1
i1
, q2
i2
, ..., qnin >∈ Q

1 ×Q2 × ...×Qn

where Qj is the set of vertices of EHMj (components of the EHMs are superscripted).

When all the elements of q are specified, we call q a full configuration. When only some of the
elements of q are specified, we call q a partial configuration and we mean that an unspecified element
can be any possible vertex of the respective EHM. For example, < q2

i2
, ..., qnin > is interpreted as the

set

< q2
i2
, ..., qnin >= {< q1

i1
, q2
i2
, ..., qnin >: q1

i1
∈ Q1}

of full configurations. Thus, a partial configuration is a compact description of a set of (full)
configurations.

A transition

< q1
i1
, q2
i2
, ..., qnin >

l−→< q1
i′1
, q2
i′2
, ..., qni′n

>

of a CHM is a triple where < q1
i1
, q2
i2
, ..., qnin > is the source configuration, < q1

i′1
, q2
i′2
, ..., qni′n

> the
target configuration, and l the label that triggers the transition. l can be either an event or a guard
(becoming true). Thus, if l = σ is an event (generated by the environment), then either qji′j = q

j
ij

if σ

is not active at qjij , or qji′j is such that (q
j
ij
, σ → σ′, qji′j , x

0
qj
i′j

) is a transition in Ej . On the other hand,

if l = G is a guard, then there must exist a transition (qmim , G → σ′, qmi′m , x
0
qm
i′m

) in some EHMm and

for j 6= m, either qj
i′j

= q
j
ij

if σ′ is not defined at qjij , or qj
i′j

is such that (q
j
ij
, σ′ → σ′′, qj

i′j
, x0
qj
i′
j

) is a

transition in Ej .
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Recall that our model also allows guarded event transitions of the form

q
G∧σ−→ q′

However, since for the transition to take place the guard must be true when the event is triggered, a
guarded event transition can be decomposed into

q1
G−→
¬G←−

q2 σ−→ q′

where q has been partitioned into q1 and q2, with Iq1 = Iq ∧ ¬G and Iq2 = Iq ∧ G. It follows that a
guarded event transition can be treated as a combination of a dynamic and an event transition.

Thus, transitions in CHMs can be classified into two types: (1) dynamic transitions, which are
labeled by guards only, and (2) event transitions, which are labeled by events.

The transitions are considered to occur instantaneously, and concurrent vertex changes in parallel
components occur at exactly the same instant (even when constituting a logically triggered finite chain
of transitions).

Remark 2 Based on the above definition, a CHM can be viewed as the same object as an EHM:

CHM = (Q,Σ, D, I, E, (q0, x0))

where

Q = Q1 ×Q2 × ...×Qn
Σ = Σ1 ∪ Σ2 ∪ ... ∪ Σn

D = {(xq, yq, uq, fq, hq) : q =< q1
i1
, q2
i2
, ..., qnin >∈ Q

1 ×Q2 × ...×Qn}
combines all the dynamics of qjij , j = 1, 2, ..., n

I = {Iq1i1
∧ Iq2i2

∧ ... ∧ Iqnin :< q1
i1
, q2
i2
, ..., qnin >∈ Q

1 ×Q2 × ...×Qn}
E is defined as above
(q0, x0) = (< q1

0, q
2
0, ..., q

n
0 >, (x

1
0, x

2
0, ..., x

n
0 ))

Therefore, we can define an execution of a CHM in the same way as that of an EHM.

4 CONTROL

4.1 Specifications

As stated in the previous section, a CHM can interact with its environment in two ways:
(1) by signal transmission (shared variables), and (2) by input/output-event synchronization. Formally,
a controller of a CHM is a hybrid machine C that runs in parallel with the CHM. The resultant system

CHM ||C
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is called the controlled or closed loop system. The objective of control is to force the controlled system
to satisfy a prescribed set of behavioral specifications.

For conventional (continuous) dynamical systems, control specification might consist of the require-
ment of stability, robustness, disturbance rejection, optimality and the like. For discrete-event systems,
specifications of required behavior are typically given as safety specifications, where a prescribed set
of unwanted behaviors or configurations is to be avoided, or liveness specifications, where a prescribed
set of termination conditions is to be met, or both.

For general hybrid systems, specifications can, in principle, be of a very complex nature incorpo-
rating both dynamic requirements and the logical (discrete) aspects.

In the present paper we consider only safety specifications given as a set of illegal configurations

Qb = {q =< q1
i1
, q2
i2
, ..., qnin >∈ Q

1 ×Q2 × ...×Qn : q is illegal}

that the system is not permitted to visit.

Our goal is to synthesize a controller that guarantees satisfaction of the above stated configuration-
based safety requirement. A controller that achieves the specification is then said to be legal.

In this paper, we shall consider only restricted interaction between the controller and the CHM by
permitting the controller to communicate with the CHM only through input/output-event synchronization.
Thus, we make the following assumption.

Assumption 2 C can only control the CHM by means of input/output-event synchronization. That is,
C can only control event transitions in the CHM.

Thus, the controller is assumed not to generate any output signals that may affect the CHM.

We shall assume further that C can control all the event transitions in the CHM. That is, all the
(externally triggered) event transitions are available to the controller. This leads to no essential loss
of generality because, when some of the events are uncontrollable, we can use the methods developed
in supervisory control of discrete-event systems (refs. 11 and 12) to deal with uncontrollable event
transitions. We shall elaborate on this issue elsewhere.

A legal controller C is said to be less restrictive than another legal controller C ′ if every execution
permitted by C ′ is also permitted by C (a formal definition will be given in the next subsection). A
legal controller is said to be minimally restrictive if it is less restrictive than any legal controller.

With a slight modification of the formalism that we shall present here, two or more controllers can
be combined by parallel composition to form a composite controller. An important characteristic of a
minimally restrictive controller is the fact that when it is combined with any other controller (legal or
not) that is possibly designed for satisfying some other specifications, such as liveness or optimality,
the combined controller is guaranteed to be safe (i.e., legal). Hence, no further verification of safety
will be needed. Furthermore, the minimally restrictive controller will intervene with the action of the
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other controller only minimally; that is, when it is absolutely necessary to do so in order to guarantee
the safety of the system.

4.2 Control Synthesis

As stated, our control objective is to ensure that the system CHM never enters the set of illegal
configurations Qb. Such entry can occur either via an event transition or via a dynamic transition.
Since all event transitions are at the disposal of the controller, prevention of entry to the illegal set
via event transitions is a trivial matter (they simply must not be triggered). Therefore, in our control
synthesis we shall focus our attention on dynamic transitions. Intuitively, the minimally restrictive legal
controller must take action, by forcing the CHM from the current configuration to some other legal
configuration, just in time (but as late as possible) to prevent a dynamic transition from leading the
system to an illegal configuration. Clearly, entry to a configuration which is legal but at which an
inescapable (unpreventable) dynamic transition to an illegal configuration is possible, must itself be
deemed technically illegal and avoided by the controller. Thus the controller synthesis algorithm that
we present below will iterate through the (still) legal configurations and examine whether it is possible
to prevent a dynamic transition from leading to an illegal configuration. In doing so, it will frequently
be necessary to “split” configurations by partitioning their invariants into their legal and illegal parts.

To streamline the ensuing analysis, we shall assume that the invariants of all legal configurations
are expressed in conjunctive normal form

I = (I11∨...∨I1l1)∧...∧(Im1∨...∨Imlm)

where Iij=(Sij ≥ Cij) or Iij=(Sij ≤ Cij). Similarly, all the guards are in conjunctive normal form

G = (G11∨...∨G1l1)∧...∧(Gm1∨...∨Gmlm)

where Gij=(Sij > Cij) or Gij=(Sij < Cij), representing some semi-open intervals.1 Without loss
of generality, we shall assume that the invariant is violated if and only if one or more of the guards is
true. (Otherwise, we can conjoin with the invariant the negation of the guards.)

Let us consider a legal configuration q. As discussed earlier, we assume that transitions leaving q
are either dynamic transitions or event transitions, and can lead to either legal or illegal configurations.
Therefore, we classify the transitions into four types:

1. Legal event transitions that lead to legal configurations

ETg(q,Qb) = {(q, σ, q′) : q
σ−→ q′ ∧ q′ 6∈ Qb}

2. Illegal event transitions that lead to illegal configurations

ETb(q,Qb) = {(q, σ, q′) : q
σ−→ q′ ∧ q′ ∈ Qb}

1More generally, we only require that guards leading to illegal configurations be described by semi-open intervals.
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3. Legal dynamic transitions that lead to legal configurations

DTg(q,Qb) = {(q,G, q′) : q
G−→ q′ ∧ q′ 6∈ Qb}

4. Illegal dynamic transitions that lead to illegal configurations

DTb(q,Qb) = {(q,G, q′) : q
G−→ q′ ∧ q′ ∈ Qb}

Since transitions in ETb(q,Qb) can be prevented by simply not being triggered, we need not discuss
them further. If DTb(q,Qb) = ∅, then no dynamic transition from q leads to an illegal configuration and
hence there is no need to split q. Otherwise, if DTb(q,Qb) 6= ∅, we may need to split q as discussed
below. Let us consider the different cases.

Case 1 DTg(q,Qb) = ∅

Since DTg(q,Qb) = ∅, the only way to prevent transitions in DTb(q,Qb) from taking place is
for the controller to trigger an event transition (q, σ, q′) ∈ ETg(q,Qb), provided this set is nonempty,
thereby forcing the CHM from q to q′. However, such a transition may be legally triggered only
if the invariant Iq′ is satisfied upon entry to q′. (Notice that if q′ is the legal subconfiguration of
a configuration whose invariant has been split to a legal part and an illegal part, satisfaction of the
invariant Iq′ is not automatically guaranteed when σ is triggered.) Thus, let us define wp(q, σ, q′) to
be the weakest precondition under which the transition (q, σ, q′) will not violate the invariant Iq′ upon
entry to q′. Since some of the shared variables that appear in Iq′ are possibly (re-)initialized upon
entering q′, the condition wp(q, σ, q′) can be computed from Iq′ by substituting into Iq′ the appropriate
initial (entry) values of all the variables that are also output variables of q′. That is, if yj is the jth
output variable of q′ and Si = yj is a shared variable that appears in Iq′ , then the value of Si must be
set to

Si = hj(x
0
q′ , uq′)

If Iq 6⇒ wp(q, σ, q′), then we shall split the configuration q into two subconfigurations q1 and q2
by partitioning the invariant Iq (and associating with each of the subconfigurations the corresponding
invariant) as

Iq1 = Iq ∧ wp(q, σ, q′)
Iq2 = Iq ∧ ¬wp(q, σ, q′)

Clearly, the dynamics of and the transitions leaving and entering the configurations q1 and q2 are the
same as for q, except that the transition (q2, σ, q

′) is not permitted or is impossible (because of the
invariant violation). Also, the transition from q1 to q2 is dynamic with the guard ¬wp(q, σ, q′), and
from q2 to q1 with the guard wp(q, σ, q′).

Clearly, q1 is legal in the sense that from it the transition to the legal configuration q′ can be forced,
while q2 is not legal. From q1, the dynamic transitions in DTb(q1, Qb) and the dynamic transition
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(q1,¬wp(q, σ, q′), q2) are illegal and must not be permitted. To prevent these transitions from taking
place in a minimally restrictive manner, σ must be forced just before any one of them can actually take
place. In other words, σ must be forced just before Iq1 becomes false. To find the condition under
which σ needs to be forced, we note that, by our assumption on invariants, Iq1 will have the conjunctive
normal form

Iq1 = (P11∨...∨P1l1)∧...∧(Pm1∨...∨Pmlm)

where Pij=(Sij ≥ Cij) or Pij=(Sij ≤ Cij), representing semi-closed intervals. Therefore, we would
like to force σ exactly on the boundary. Recall that, by assumption, the shared variables Si are rate-
bounded; that is,

.
Si∈[ri

L, ri
U ], where ri

L and ri
U are the lower and upper bounds, respectively. Thus,

for a predicate P = (Si ≤ Ci), we define

critical(P ) =

{
(Si ≥ Ci) if ri

U > 0
false otherwise

Similarly, for P = (Si ≥ Ci),

critical(P ) =

{
(Si ≤ Ci) if ri

L < 0
false otherwise

For conjunction of two predicates P = P1 ∧ P2,

critical(P ) = critical(P1) ∨ critical(P2)

and for disjunction of two predicates P = P1 ∨ P2,

critical(P ) = critical(P1) ∧ critical(P2)

The condition under which the transition (q, σ, q′) will be forced is then

critical(Iq1) = critical(Iq ∧ wp(q, σ, q′))

If there are more than one legal event transition in ETg(q,Qb), then we shall split q into q1 and
q2 as follows.

Iq1 = Iq ∧ (∨(q,σ,q′)∈ETg(q,Qb)
wp(q, σ, q′))

Iq2 = Iq ∧ ¬(∨(q,σ,q′)∈ETg(q,Qb)
wp(q, σ, q′))

The condition under which a legal event transition (q, σ, q′) needs to be forced is given by

critical(Iq1) ∧ wp(q, σ, q′)
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Case 2 ETg(q,Qb) = ∅

Since ETg(q,Qb) = ∅, the transitions in DTb(q,Qb) will be prevented from taking place only if
they are either preempted by some dynamic transitions in DTg(b,Qb) or will never take place due to
the dynamics at q.

Note that, because of configuration splitting, the target configuration of a dynamic transition guarded
by a guard G may depend on the dynamic condition at the source configuration at the instant when G
becomes true. Thus, if the configuration q′ is split into q′1 and q′2, then we may have either (q,G, q′1) ∈
DTg(q,Qb) or (q,G, q′2) ∈ DTb(q,Qb), depending on the dynamic conditions. To deal with such cases
effectively, it will be convenient to modify (q,G, q′) by the following equivalent dynamic transition

(q,G ∧ wp(q,G, q′), q′)

where wp(q,G, q′) is the weakest precondition under which the transition (q,G, q′) will not violate the
invariant Iq′ upon entry to q′. wp(q,G, q′) is calculated in the same way as wp(q, σ, q′).

To find the condition under which a dynamic transition (q,G, q′) ∈ DTb(q,Qb) will be preempted
by another dynamic transition (i.e., (q,G, q′) will not take place), let us consider first the time at which
a predicate will become true. We begin by considering an atomic formula

P=(Si > Ci)

Suppose that at a given instant t at which Si(t) = Si, P is false; that is, Si≤Ci. Then the interval of
time that will elapse before P can become true is bounded by the minimum value

Tmin(true(P )) =

{
(Ci − Si)/riU if ri

U > 0
∞ otherwise

and the maximum value

Tmax(true(P )) =

{
(Ci − Si)/riL if ri

L > 0
∞ otherwise

where, as before, ri
L and ri

U are the lower and upper bounds of
.
S, respectively.

If, at the instant t, P is true, then clearly Tmin(true(P )) = Tmax(true(P )) = 0.

Similarly, if P is given by

P=(Si < Ci)

then if, at the instant t, P is true, Tmin(true(P )) = Tmax(true(P )) = 0; otherwise, the minimum
interval is

Tmin(true(P )) =

{
(Ci − Si)/riL if ri

L < 0
∞ otherwise
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and the maximum interval is

Tmax(true(P )) =

{
(Ci − Si)/riU if ri

U < 0
∞ otherwise

For conjunction of two predicates, P = P1∧P2, it is clear that

Tmin(true(P )) = max{Tmin(true(P1)), Tmin(true(P2))}

Tmax(true(P )) = max{Tmax(true(P1)), Tmax(true(P2))}
and for disjunction of two predicates, P = P1∨P2

Tmin(true(P )) = min{Tmin(true(P1)), Tmin(true(P2))}

Tmax(true(P )) = min{Tmax(true(P1)), Tmax(true(P2))}
Also, if a predicate is always false: P = false, then Tmin(true(P )) = Tmax(true(P )) =∞.

Now, the dynamic transition (q,G, q′) ∈ DTb(q,Qb) will be preempted by another dynamic tran-
sition, provided Iq, the invariant of q, becomes false before G∧wp(q,G, q′) becomes true. The earliest
time that G ∧ wp(q,G, q′) will become true is Tmin(G ∧ wp(q,G, q′)) and the latest time that Iq will
become false is given by Tmax(false(Iq)) = Tmax(true(¬Iq)). It is clear that to ensure that the
transition (q,G, q′) will not take place, it must be required that the following preemptive condition2

pc(q,G, q′) = (Tmin(true(G ∧ wp(q,G, q′))) > Tmax(false(Iq)))

be satisfied. Therefore, we shall split the configuration q into two subconfigurations q1 and q2, by
partitioning the invariant Iq as

Iq1 = Iq ∧ pc(q,G, q′)
Iq2 = Iq ∧ ¬pc(q,G, q′)

Clearly, the dynamics of and the transitions leaving and entering the configurations q1 and q2 are the
same as for q, except that the transition (q1, G, q

′) is now impossible.

If there are more than one illegal dynamic transition at q, then we shall split q into q1 and q2 as
follows.

Iq1 = Iq ∧ (∧(q,G,q′)∈DTb(q,Qb)pc(q,G, q
′))

Iq2 = Iq ∧ ¬(∧(q,G,q′)∈DTb(q,Qb)pc(q,G, q
′))

2We take the convention that if Tmin(true(G ∧ wp(q,G, q′))) = ∞, then pc(q,G, q′) = true even if
Tmax(false(Iq)) =∞.
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General case That is, we require neither ETg(q,Qb) = ∅ nor DTg(q,Qb) = ∅.

In this general case, we can either rely on legal dynamic transitions to preempt the illegal dynamic
transitions or, if this does not happen, force some legal event transitions. Therefore, we shall split q
into q1 and q2 as follows.3

Iq1 = Iq ∧ ((∧(q,G,q′)∈DTb(q,Qb)pc(q,G, q
′)) ∨ (∨(q,σ,q′)∈ETg(q,Qb)

wp(q, σ, q′)))
Iq2 = Iq ∧ (¬(∧(q,G,q′)∈DTb(q,Qb)pc(q,G, q

′)) ∧ ¬(∨(q,σ,q′)∈ETg(q,Qb)
wp(q, σ, q′)))

The condition under which a legal event transition (q, σ, q′) needs to be forced is now given by4

critical(Iq1) ∧ wp(q, σ, q′) ∧ (¬(∧(q,G,q′)∈DTb(q,Qb)pc(q,G, q
′)))

Note that if we adopt the convention that

∧(q,G,q′)∈DTb(q,Qb)pc(q,G, q
′) = true if DTb(q,Qb) = ∅

∨(q,σ,q′)∈ETg(q,Qb)
wp(q, σ, q′) = false if ETg(q,Qb) = ∅

then this general case covers all the cases above, including the case when DTb(q,Qb) = ∅.

From the above discussions, we can now formally describe our synthesis algorithm.

Algorithm 1 (Control Synthesis)

Input

• The model of the system

CHM = (Q,Σ, D, I, E, (q0, x0))

• The set of illegal configurations

Qb ⊆ Q

Output

• The controller

C = (Qc,Σc,Dc, Ic, Ec, (qc0, x
c
0))

3If (q,G, q′) ∈ DTb(q,Qb) cannot be prevented from occurring, then we must consider q as illegal. In that case
Iq1 = false and Iq2 = Iq .

4There is a possible complication if the newly defined guards form an instantaneous loop of consecutive transitions. If
this occurs, further analysis will be required.
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Initialization

1. Set of bad configurations

BC := Qb;

2. Set of pending configurations

PC := Q−Qb;

3. New set of pending configurations

NPC := ∅;

4. For each q∈PC, set its configuration origin as

CO(q) = q;

Iteration

5. For all q ∈ PC do

Iq1 := Iq ∧ ((∧(q,G,q′)∈DTb(q,BC)pc(q,G, q
′)) ∨ (∨(q,σ,q′)∈ETg(q,BC)wp(q, σ, q

′)));
Iq2 := Iq ∧ (¬(∧(q,G,q′)∈DTb(q,BC)pc(q,G, q

′)) ∧ ¬(∨(q,σ,q′)∈ETg(q,BC)wp(q, σ, q
′)));

If Iq1 6= false, then

NPC := NPC ∪ {q1};
CO(q1) := CO(q);

If Iq2 6= false, then

BC := BC ∪ {q2};

6. If PC = NPC, go to 8

7. Set

PC := NPC;
NPC := ∅;

Go to 5
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Construction of C

8. Define vertices, events, and dynamics

Qc := PC;
Σc := Σ ∪ {σ̃ : σ ∈ Σ};
Dc := ∅;

9. Define transitions

Ec := {(q, critical(Iq) ∧ wp(q, σ, q′) ∧ (¬(∧(q,G,q′′)∈DTb(q,BC)pc(q,G, q
′′)))→ σ, q′) :

q, q′∈Qc∧(CO(q), σ, CO(q′))∈E};
Ec := Ec ∪ {(q, wp(q, σ, q′) ∧ σ̃ → σ, q′) : q, q′∈Qc∧(CO(q), σ, CO(q′))∈E};

10. End

Therefore, the controller C has no dynamics. Its vertices are copies of the legal configurations of
CHM that survive after the partition. Its events include the output events σ and the input events σ̃ from
the environment or other controllers. Its transitions are of two types: (1) dynamic transitions that are
triggered when the CHM is about to become potentially illegal, and (2) guarded event transitions that
are triggered by input events.

Another controller D can be embedded into C as follows. First, all the output events σ in D are
replaced by σ̃ to obtain D̃. Then the embedded control system is given by

CHM ||C||D̃

We can now prove the following.

Theorem 1 If Algorithm 1 terminates in a finite number of steps and no sequence of instantaneous
transitions forms a loop, then the controller synthesized is the minimally restrictive legal controller in
the following sense.

1. For any controller D, an execution in CHM ||C||D̃ will never visit illegal configurations Qb.

2. For any legal controller D, an execution is possible in CHM ||D if and only if it is possible
in CHM ||C||D̃.

Proof

Since Algorithm 1 terminates in a finite number of steps and no sequence of instantaneous transitions
forms a loop, the controller is well defined. In particular, time progresses as execution continues and
during any finite interval of time only a finite number of transitions take place.

18



          

To prove part 1, it is sufficient to show that an execution in CHM ||C||D̃ will only visit configu-
rations in

Qc ⊆ Q−Qb

If this is not the case, then there exists an execution

q0
e1,t1−→ q1 −→ ...−→qn−1

en,tn−→ qn

such that q0, q1, ..., qn−1 ∈ Qc but qn 6∈ Qc.

Let us consider the transition from qn−1 to qn. It cannot be an event transition because such illegal
event transitions are not permitted by C. If it is a dynamic transition, then, since it is not preempted at
qn−1, it implies that qn−1 6∈ Qc, a contradiction.

To prove part 2, let us assume that

q0
e1,t1−→ q1 −→ ...−→qn−1

en,tn−→ qn

is a possible execution of CHM ||D but the last transition from qn−1 to qn is impossible in CHM ||C||D̃;
that is, qn 6∈ Qc. Then by our construction of qn, there exists a continuation of the execution in CHM ||D

qn
en+1,tn+1−→ qn+1 −→ ...−→qn+m

that will lead to an illegal configuration qn+m ∈ Qb. This execution cannot be prevented by D, a
contradiction to the hypothesis that D is legal.

On the other hand, if

q0
e1,t1−→ q1 −→ ...−→qn−1

en,tn−→ qn

is a possible execution of CHM ||C||D̃ but the last transition from qn−1 to qn is impossible in CHM ||D,
then this last transition must be triggered by a dynamic transition in C when the following guard becomes
true:

Gc = critical(Iqn−1) ∧ wp(qn−1, σ, qn) ∧ (¬(∧(qn−1,G,q′)∈DTb(qn−1,BC)pc(qn−1, G, q
′)))

Since the transition (qn−1Gc, qn) does not take place in CHM ||D, by our construction of Gc, the next
transition

qn−1
e′n,t
′
n−→ q′n

could lead to q′n 6∈ Qc. By the same argument as above, we conclude that D is illegal, a contradiction.
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5 STEAM BOILER EXAMPLE

In this section, we shall illustrate application of the control synthesis algorithm developed in the
previous section by synthesizing a controller for the familiar steam boiler example that was proposed
in reference 19 as a benchmark problem for modeling and verification of hybrid systems (see also, e.g.,
references 20 and 21). This example was proposed as a benchmark problem because it has many essential
properties that are found in some commonly used industrial processes, such as chemical reactors, oil
refineries, etc.

We use a simplified model of the steam boiler described in reference 19. Some parameters are set
at the same values as in reference 20. This simplified model captures the essence of the control problem
addressed in this paper.

The steam boiler consists of a water tank (boiler) equipped with two pumps (instead of four pumps
as in reference 19). Each pump can supply water to the boiler at the rate of 4 liters/sec. The pump can
be switched on (event start i) and off (event stop i) by a controller. Due to the fact that the pump
cannot balance the presure inside the boiler instantaneously, there is a five-second delay before water
starts pouring into the boiler after the pump is switched on.

Steam is generated by an unmodeled mechanism. The rate at which steam is generated is therefore
nondeterministic. But we do know that the rate is bounded between 0 and 6 liters/sec.

The control objective is to maintain the water level L in the boiler between the minimal level of
5 liters and the maximal level of 220 liters. This is achieved by turning the two pumps on and off.
Since we are interested in synthesizing the minimally restrictive controller, our controller will accept
(i.e., permit) all behaviors (turning pumps on and off) that do not imply possible violation of the level
constraints and will intervene by forcing the pumps (on or off) only whenever it is absolutely necessary
to do so in order to guarantee constraint satisfaction.

The controller can sample the water level in the boiler only every five seconds. Since this implies
sampled decision making, there is no loss in generality in assuming that control (turning the pumps on
and off) can only be applied at the sampling instants.

In summary, the steam boiler to be controlled is modeled by the CHM in figure 3.

As stated above, the parameters are given by

P1 = 4, P2 = 4,
VL = 0, VH = 6,
LL = 5, LH = 220

Without changing the nature of the problem, but to avoid nondeterminism in the controller, we shall
assume that Pump 1 will be turned on before Pump 2 can be turned on; and Pump 1 cannot be turned
off before Pump 2 is turned off. Therefore, the pump logic is shown in figure 4.
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Figure 3. Steam boiler system.

Thus, the configurations of the CHM to be controlled can be denoted by the legal configurations

q1 =< off1, off2, normal >

q2 =< starting1, off2, normal >

q3 =< on1, off2, normal >

q4 =< starting1, starting2, normal >

q5 =< on1, starting2, normal >

q6 =< on1, on2, normal >

and illegal configurations where normal ([L ≥ 5] ∧ [L ≤ 220]) is replaced by high ([L > 220]) or
low ([L < 5]). That is,

Qb =< high > ∪ < low >

Because of the delays in turning the pumps on and the delays caused by sampling, there are config-
urations in < normal > from which unavoidable dynamic transitions may lead to illegal configurations
in Qb. Therefore, we must partition < normal > properly using the synthesis algorithm.
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Figure 4. Pump logic.

Before applying the algorithm, we first replace the guarded event transitions by dynamic and event
transitions. Also, note that since C1 = C2 = C whenever they are not equal to 0 or 5, only one clock
is sufficient (to be denoted by C). Thus, the equivalent CHM is shown in figure 5, where, for clarity,
the illegal configurations are not drawn.

We shall only illustrate how the algorithm performs on q6 and q6′ , where

Iq6 = [L ≥ 5] ∧ [L ≤ 220] ∧ [C < 5]

I
q6
′ = [L ≥ 5] ∧ [L ≤ 220] ∧ [C ≥ 5]

By our algorithm,

wp(q6′ , stop 2, q3′) = [L ≥ 5] ∧ [L ≤ 220]

Therefore, q6′ will not be split. On the other hand, q6 will be split as follows (note that at q6, L̇ ∈ [2, 8]).

pc(q6, [L > 220], < illegal >)
= (Tmin([L > 220]) > Tmax([L < 5] ∨ [L > 220] ∨ [C ≥ 5]))
= ((220− L)/8 > min{∞, (220− L)/8, 5− C})
= ((220− L)/8 > (5− C))
= (L < 180 + 8C)
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Figure 5. Composite hybrid machine.

Similarly,

pc(q6, [L < 5], < illegal >)
= (Tmin([L < 5]) > Tmax([L < 5] ∨ [L > 220] ∨ [C ≥ 5]))
= (∞ > Tmax([L < 5] ∨ [L > 220] ∨ [C ≥ 5]))
= true

Therefore, q6 will be split into q6
1 and q6

2 with invariants

Iq61
= Iq6 ∧ pc(q6, [L > 220], < illegal >) ∧ pc(q6, [L < 5], < illegal >)

= [L ≥ 5] ∧ [L ≤ 220] ∧ [C < 5] ∧ [L < 180 + 8C]
= [L ≥ 5] ∧ [C < 5] ∧ [L < 180 + 8C]

Iq62
= [L ≥ 5] ∧ [L ≤ 220] ∧ [C < 5] ∧ [L ≥ 180 + 8C]
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In the next iteration, q6′ will be analyzed as follows. There are five transitions leaving q6′ :

(q6′ , [C≥5], q6
1)

(q6′ , [C≥5], q6
2)

(q6′ , [L < 5], < illegal >)

(q6′ , [L > 220], < illegal >)

(q6′ , stop 2, q3′)

It can be calculated that

pc(q6′ , [C≥5], q6
2)

= (Tmin([C≥5] ∧ [L > 180]) > Tmax([L < 5] ∨ [L > 220] ∨ [C < 5]))
= (max{0, (180− L)/8} > min{∞, (220− L)/2, 0})
= ((180− L/8 > 0)
= [L < 180]

pc(q6′ , [L < 5], < illegal >) = true

pc(q6′ , [L > 220], < illegal >) = true

wp(q6′ , stop 2, q3′) = [L ≥ 5] ∧ [L ≤ 220]

Therefore q6′ will not be split and event stop 2 will be forced under the condition

critical(I
q6
′ ) ∧ wp(q6′ , stop 2, q3′)∧

¬(pc(q6′ , [C≥5], q6
2) ∧ pc(q6′ , [L < 5], < illegal >) ∧ pc(q6′ , [L > 220], < illegal >))

= ([L ≤ 5] ∨ [L ≥ 220] ∨ [C ≤ 5]) ∧ [L > 180] ∧ [L ≥ 5] ∧ [L ≤ 220]

Since [C ≤ 5], [L ≥ 5], [L ≤ 220] are satisfied at q6′ , the forcing will actually take place when
[L > 180].

Table 1 summarizes the results of the synthesis algorithm at each iteration.
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Table 1. Steam boiler controller synthesis

Initial First iteration Second iteration Third iteration

q1 [L≥5] [L > 35− 6C] [L > 35− 6C] [L > 65− 6C]
∧[L≤220] ∧[L≤220] ∧[L≤220] ∧[L≤220]
∧[C < 5] ∧[C < 5] ∧[C < 5] ∧[C < 5]

q1′ [L≥5] [L≥5] [L > 35] [L > 35]
∧[L≤220] ∧[L≤220] ∧[L≤220] ∧[L≤220]
∧[C≥5] ∧[C≥5] ∧[C≥5] ∧[C≥5]

q2 [L≥5] [L > 35− 6C] [L > 35− 6C] [L > 45− 6C]
∧[L≤220] ∧[L≤220] ∧[L≤220] ∧[L≤220]
∧[C < 5] ∧[C < 5] ∧[C < 5] ∧[C < 5]

q2′ [L≥5] [L≥5] [L > 35] [L > 35]
∧[L≤220] ∧[L≤220] ∧[L≤220] ∧[L≤220]
∧[C≥5] ∧[C≥5] ∧[C≥5] ∧[C≥5]

q3 [L≥5] [L > 15− 2C] [L > 15− 2C] [L > 25− 2C]
∧[L≤220] ∧[L≤200 + 4C] ∧[L≤200 + 4C] ∧[L≤200 + 4C]
∧[C < 5] ∧[C < 5] ∧[C < 5] ∧[C < 5]

q3′ [L≥5] [L≥5] [L > 15] [L > 15]
∧[L≤220] ∧[L≤220] ∧[L≤220] ∧[L≤220]
∧[C≥5] ∧[C≥5] ∧[C≥5] ∧[C≥5]

q4 [L≥5] [L > 35− 6C] [L > 35− 6C] [L > 35− 6C]
∧[L≤220] ∧[L≤220] ∧[L≤220] ∧[L≤220]
∧[C < 5] ∧[C < 5] ∧[C < 5] ∧[C < 5]

q5 [L≥5] [L > 15− 2C] [L > 15− 2C] [L > 15− 2C]
∧[L≤220] ∧[L < 200 + 4C] ∧[L < 200 + 4C] ∧[L < 200 + 4C]
∧[C < 5] ∧[C < 5] ∧[C < 5] ∧[C < 5]

q6 [L≥5] [L≥5] [L≥5] [L≥5]
∧[L≤220] ∧[L < 180 + 8C] ∧[L < 180 + 8C] ∧[L < 180 + 8C]
∧[C < 5] ∧[C < 5] ∧[C < 5] ∧[C < 5]

q6′ [L≥5] [L≥5] [L≥5] [L≥5]
∧[L≤220] ∧[L≤220] ∧[L≤220] ∧[L≤220]
∧[C≥5] ∧[C≥5] ∧[C≥5] ∧[C≥5]

Finally, the minimally restrictive controller is shown in figure 6.
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Figure 6. Steam boiler controller.
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Control Synthesis for a Class of Hybrid Systems Subject to
Configuration-Based Safety Constraints

Michael Heymann,† Feng Lin,‡ and George Meyer

We examine a class of hybrid systems which we call Composite Hybrid Machines (CHMs) that consists
of the concurrent (and partially synchronized) operation of Elementary Hybrid Machines (EHMs).

Legal behavior, specified by a set of illegal configurations that the CHM may not enter, is to be
achieved by the concurrent operation of the CHM with a suitably designed legal controller. In the present
paper we focus on the problem  of synthesizing a legal controller, whenever such a controller exists. More
specifically, we address the problem of synthesizing the minimally restrictive legal controller.

A controller is minimally restrictive if, when composed to operate concurrently with another legal
controller, it will never interfere with the operation of the other controller and, therefore, can be composed
to operate concurrently with any other controller that may be designed to achieve liveness specifications or
optimality requirements without the need to reinvestigate or reverify legality of the composite controller.

We confine our attention to a special class of CHMs where system dynamics is rate-limited and legal
guards are conjunctions or disjunctions of atomic formulas in the dynamic variables (of the type x ≤ x0

  or
x ≥ x

0
). We  present an algorithm for synthesis of the minimally restrictive legal controller.

We demonstrate our approach by synthesizing a minimally restrictive controller for a steam boiler (the
verification of which recently received a great deal of attention).
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